Mas-Related Gene (Mrg) C Activation Attenuates Bone Cancer Pain via Modulating Gi and NR2B
نویسندگان
چکیده
OBJECTIVE This study is to investigate the role of Mas-related gene (Mrg) C in the pathogenesis and treatment of bone cancer pain (BCP). METHODS BCP mouse model was established by osteosarcoma cell inoculation. Pain-related behaviors were assessed with the spontaneous lifting behavior test and mechanical allodynia test. Expression levels of MrgC, Gi, and NR2B in the spinal cord were detected with Western blot analysis and immunohistochemistry. RESULTS Pain-related behavior tests showed significantly increased spontaneous flinches (NSF) and decreased paw withdrawal mechanical threshold (PWMT) in mouse models of BCP. Western blot analysis showed that, compared with the control group and before modeling, all the expression levels of MrgC, Gi, and NR2B in the spinal cord of BCP mice were dramatically elevated, which were especially increased at day 7 after operation and thereafter, in a time-dependent manner. Moreover, the treatment of MrgC agonist BAM8-22 significantly up-regulated Gi and down-regulated NR2B expression levels, in the spinal cord of BCP mice, in a time-dependent manner. On the other hand, anti-MrgC significantly down-regulated Gi expression, while dramatically up-regulated NR2B expression, in the BCP mice. Similar results were obtained from the immunohistochemical detection. Importantly, BAM8-22 significantly attenuated the nociceptive behaviors in the BCP mice. CONCLUSION Our results indicated the MrgC-mediated Gi and NR2B expression alterations in the BCP mice, which might contribute to the pain hypersensitivity. These findings may provide a novel strategy for the treatment of BCP in clinic.
منابع مشابه
Interactions between the Mas-related receptors MrgD and MrgE alter signalling and trafficking of MrgD.
When expressed via an inducible promoter in human embryonic kidney 293 cells, the rat Mas-related gene D (rMrgD) receptor responded to beta-alanine but not L-alanine by elevating intracellular [Ca(2+)], stimulating phosphorylation of the mitogenactivated protein kinases known as extracellular signal-regulated kinase (ERK) 1 and ERK2 and translocating from the plasma membrane to punctate intrace...
متن کاملNegative regulation of REST on NR2B in spinal cord contributes to the development of bone cancer pain in mice
In this study, C3H/HeNCrlVr mice are implanted with sarcoma NCTC 2472 cells into the intramedullary space of the femur to induce ongoing bone cancer-related pain behaviors. During the progress of the bone cancer pain, the down-regulation in spinal REST (Neuron-restrictive silencer factor, NRSF/REST) with concomitant up-regulation in spinal NR2B (2B subunit of N-methyl-D-aspartate receptor, NR2B...
متن کاملMolecular and Cellular Pathobiology Blocking EphB1 Receptor Forward Signaling in Spinal Cord Relieves Bone Cancer Pain and Rescues Analgesic Effect of Morphine Treatment in Rodents
Treating bone cancer pain continues to be a clinical challenge and underlyingmechanisms of bone cancer pain remain elusive. Here, we report that EphB1 receptor forward signaling in the spinal cord is critical to the development of bone cancer pain and morphine tolerance in treating bone cancer pain. Tibia bone cavity tumor cell implantation (TCI) produces bone cancer–related thermal hyperalgesi...
متن کاملSelective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain.
Cancer colonization of bone leads to the activation of osteoclasts, thereby producing local tissue acidosis and bone resorption. This process may contribute to the generation of both ongoing and movement-evoked pain, resulting from the activation of sensory neurons that detect noxious stimuli (nociceptors). The capsaicin receptor TRPV1 (transient receptor potential vanilloid subtype 1) is a cat...
متن کاملBlocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents.
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we report that EphB1 receptor forward signaling in the spinal cord is critical to the development of bone cancer pain and morphine tolerance in treating bone cancer pain. Tibia bone cavity tumor cell implantation (TCI) produces bone cancer-related thermal hyperalges...
متن کامل